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IXTRODUCTION

T HE recent development of various methods of modulation such as reM
and PPM which exchange bandwidth for signal-to-noise ratio has in

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley"
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the sta tistiral structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Belt System Tectmical J OUT

nal, April 1924, p, 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
TI aIlS., v. 47, April 1928, p. 617.

2 Hartley. R. V. L.. "Transmission oi Information.' Belt System Technical Journal, July
1928, p. .'US.
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such as time, bandwidth, number of relays, etc., tend to vary linearly with
the logarithm of the number of possibilities. For example, adding one relay
to a group doubles the number of possible states of the relays. It adds 1
to the base 2 logarithm of this number. Doubling the time roughly squares
the number of possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is
closely related to (1) since we intuitively measure entities by linear com
parison with common standards. One feels, for example, that two punched
cards should have twice the capacity of one for information storage, and two
identical channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations
are simple in terms of the logarithm but would require clumsy restatement in
terms of the number of. possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for
measuring information. If the base 2 is used the resulting units may be
called binary digits, or more briefly bits, a word suggested by J. W. Tukey,
A device with two stable positions, such as a relay or a flip-flop circuit, can
store one bit of information. N such devices can store N bits, since the
total number of possible states is 2N and log22 N = N. If the base 10 is
used the units may be called decimal digits. Since

log- M = 10gIO MIlogro2

= 3.32 logro M,

a decimal digit is about 3! bits. A digit wheel on a desk computing machine
has ten stable positions and therefore has a storage capacity of one decimal
digit. In analytical work where integration and differentiation. are involved
the base e is sometimes useful. The resulting units of information will be
called natural units. Change from the base a to base b merely requires
multiplication by log, a.

By a communication system we will mean a system of the type indicated
schematically in Fig. 1. It consists of essentially five parts:

1. An information source which produces a message or sequence of mes
sages to be communicated to the receiving terminal. The message may be
of various types: e.g. (a) A sequence of letters as in a telegraph or teletype
system; (b) A single function of time f(t) as in radio or telephony; (c) A
function of time and other variables as in black and white television-here
the message may be thought of as a function f(x, y, t) of two space coordi
nates and time, the light intensity at point Cr, y) and time t on a pickup tube
plate; (d) Two or more functions of time, say jCt), g(/), h(t)-this is the
case in "three dimensional" sound transmission or if the system is intended
to service several individual channels in multiplex; (e) Several functions of
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several variables-in color television the message consists of three functions
1(x, y, z), g(x, )I, I), Ir(x, )I, t) defined in a three-dimensional continuum
we may also think of these three functions as components of a vector field
defined in the region-similarly, several black and white television sources
would produce "messages" consisting of a number of functions of three
variables; (f) Various combinations also occur, for example in television
with an associated audio channel.

2. A transmitter which operates on the message in some way to produce a
signal suitable for transmission over the channel. In telephony this opera
tion consists merely of changing sound pressure into a proportional electrical
current. In telegraphy we have an encoding operation which produces a
sequence of dots, dashes and spaces on the channel corresponding to the
message. In a multiplex PCM system the different speech functions must
be sampled, compressed, quantized and encoded, and finally interleaved

INFORMATION
SOURCE TRANSMITTER

SIGNAL RECEIVED
SIGNAL

RECEIVER DESTINATION

MESSAGE MESSAGE

NOISE
SOURCE

Fig. I-Schematic diagram IIi a general communication system.

properly to construct the signal. Vocoder systems, television, and fre
quency modulation are other examples of complex operations applied to the
message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of
radio frequencies. a beam of light , etc

-t. The receiver ordinarily performs the inverse operation of that done by
the transmitter, reconstructing the message from the signal.

S. The des/ilia/ion is the person (or thing) for whom the message is in
tended.

\Ve wish to consider certain general problems involving communication
systems. To do this it is first necessary to represent the various elements
involved as mathematical entities, suitably idealized from their physical
counterparts. We may roughly classify communication systems into three
main categories: discrete, continuous and mixed. By a discrete system we
will mean one in which both the message and the signal are a sequence of
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discrete symbols. A typical case is telegraphy where the message is a
sequence of letters and the signal a sequence of dots, dashes and spaces.
A continuous system is one in which the message and signal are both treated
as continuous functions, e.g. radio or television. A mixed system is one in
which both discrete and continuous variables appear, e.g., PCM transmis
sion of speech.

We first consider the discrete case. This case has applications not only
in communication theory, but also in the theory of computing machines,
the design of telephone exchanges and other fields. In addition the discrete
case forms a foundation for the continuous and mixed cases which will be
treated in the second half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. TIlE DISCRETE NOISELESS CHANNEL

Teletype and telegraphy are two simple examples of a discrete channel
for transmitting information. Generally, a discrete channel will mean a
system whereby a sequence of choices from a finite set of elementary sym
bols Sl ... S n can be transmitted from one point to another. Each of the
symbols S, is assumed to have a certain duration in time Ii seconds (not
necessarily the same for different Si, for example the dots and dashes in
telegraphy). It is not required that all possible sequences of the S, be cap
able of transmission on the system; certain sequences only may be allowed.
These will be possible signals for the channel. Thus in telegraphy suppose
the symbols are: (1) A dot, consisting of line closure for a unit of time and
then line open for a unit of time; (2) A dash, consisting of three time units
of closure and one unit open; (3) A letter space consisting of, say, three units
of line open; (4) A word space of six units of line open. We might place
the restriction on allowable sequences that no spaces follow each other (for
if two letter spaces are adjacent, it is identical with a word space). The
question we now consider is how one can measure the capacity of such a
channel to transmit information.

In the teletype case where all symbols are of the same duration, and any
sequence of the 32 symbols is allowed the answer is easy. Each symbol
represents five bits of information. If the system transmits It symbols
per second it is natural to say that the channel has a capacity of 5n bits per
second. This does not mean that the teletype channel will always be trans
mitting information at this rate-this is the maximum possible rate and
whether or not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later.
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In the more general case with different lengths of symbols and constraints
on the allowed sequences, we make the following definition:
Definition: The capacity C of a discrete channel is given by

C = Lim log ";(T)
T~",

where N(T) is the number of allowed signals of duration T.
It is easily seen that in the teletype case this reduces to the previous

result. It can be shown that the limit in question will exist as a finite num
ber in most cases of interest. Suppose all sequences of the symbols 51 , ... ,
5" are allowed and these symbols have durations /1 , ... , In. What is the
channel capacity? If NO) represents the number of sequences of duration
I we have

N(t) = N(t - h) + Nl] - t 2) + ... + N(t - In)

The total number is equal to the sum of the numbers of sequences ending in
51,52 , ••• , S; and these are N(t - h), N(t - t2), ... , N(t - In), respec
tively. According to a well known result in finite differences, N(t) is then
asymptotic for large I to X~ where Xo is the largest real solution of the
characteristic equation:

X-I l + X-I, + ... + x:': = 1

and therefore

C = log X o

In case there are restrictions on allowed sequences we may still often ob
tain a difference equation of this type and find C from the characteristic
equation. In the telegraphy case mentioned above

N(t) = N(t - 2) + NO - 4) + N(t - 5) + N(t - 7) + N(t - 8)

+ N(t - 10)

as we see by counting sequences of symbols according to the last or next to
the last symbol occurring. Hence C is - log lAo where lAo is the positive
root of 1 = 1-'2 + 1A4 + J.i.5 + 1-'7 + J.i.s + IA lO• Solving this we find C = 0.539.

A very general type of restriction which may be placed on allowed se
quences is the following: We imagine a number of possible states G1 ,a2 , ... ,

am. For each state only certain symbols from the set 51 , ... , S« can be
transmitted (different subsets for the different states). When one of these
has been transmitted the state changes to a new state depending both on
the old state and the particular symbol transmitted. The telegraph case is
a simple example of this. There are two states depending on whether or not
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a space was the last symbol transmitted. If so then only a dot or a dash
can be sent next and the state always changes. If not, any symbol can be
transmitted and the state changes if a space is sent, otherwise it remains
the same. The conditions can be indicated in a linear graph as shown in
Fig. 2. The junction points correspond to the states and the lines indicate
the symbols possible in a state and the resulting state. In Appendix I it is
shown that if the conditions on allowed sequences can be described in this
form C will exist and can be calculated in accordance with the following
result:
Theorem 1: Let b;;) be the duration of the Slh symbol which is allowable in
state i and leads to state j. Then the channel capacity C is equal to log
W where Tl1 is the largest real root of the determinant equation:

IL W-b~;) - Oij I = o..
where Oij = 1 if i = j and is zero otherwise.

DASH

DOT

DASH

WORD sPACE

Fig. 2-Graphical representation of the constraints on telegraph symbols.

For example, in the telegraph case (Fig. 2) the determinant is:

I
-1 (U,-2 + lJ,-4) I

= 0
i (H,-3 + nd) (nr- 2 + Hr - 4 -;- 1)

On expansion this leads to the equation given above for this case.

2. THE DISCRETE SOURCE OF INFORMATION

We have seen that under very general conditions the logarithm of the
number of possible signals in a discrete channel increases linearly with time.
The capacity to transmit information can be specified by giving this rate of
increase, the number of bits per second required to specify the particular
signal used.

We now consider the information source. How is an information source
to be described mathematically, and how much information in bits per sec
ond is produced in a given source? The main point at issue is the effect of
statistical knowledge about the source in reducing the required capacity
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of the channel, by the use of proper encoding of the information. In teleg
raphy, for example, the messages to be transmitted consist of sequences
of letters. These sequences, however, are not completely random. In
general, they form sentences and have the statistical structure of, say, Eng
lish. The letter E occurs more frequently than Q, the sequence TH more
frequently than XP, etc. The existence of this structure allows one to
make a saving in time (or channel capacity) by properly encoding the mes
sage sequences into signal sequences. This is already done to a limited ex
tent in telegraphy by using the shortest channel symbol, a dot. for the most
common English letter E; while the infrequent letters, Q, X, Z are repre
sented by longer sequences of dots and clashes. This idea is carried still
further in certain commercial codes where common words and phrases are
represented by four- or Jive-letter code groups with a considerable saving in
average time. The standardized greeting and anniversary telegrams now
in use extend this to the point of encoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message, symbol by
symbol. It will choose successive symbols according to certain probabilities
depending, in general, on preceding choices as well as the particular symbols
in question, A physical system, or a mathematical model of a system which
produces such a sequence of symbols governed by a set of probabilities is
known as a stochastic process." \Ve may consider a discrete source, there
fore, to be represented by a stochastic pro:ess. Conversely, any stochastic
process which produces a discrete sequence of symbols chosen from a finite
set may be considered a discrete source. This will include such cases as:
1. Natural written languages such as English, German, Chinese.
2. Continuous information sources that have been rendered discrete by some

quantizing process. For example, the quantized speech from a rCM
transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic
process which generates a sequence of symbols. The following are ex
amples of this last type of source.
(A) Suppose we have live letters A, H, C, D, E which are chosen each

with probability .2, successive choices being independent. This
woulclleacl to a sequence of which the following is a typical example.
BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD
This was constructed with the use of a table of random numbers.'

'S~~, for example, S. Chandrusekhar, "Stochastic Problems in Physics and Astronomy."
Revit"i.l·S oj stodon Physics, v, IS. Xo. I. January 1943. p. I.

., Kendall and Smith. "Tables of Random Sampling Numbers;" Cambridge. 1939.
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(B) Using the same five letters let the probabilities be .4, .1, .2, .2, .1
respectively, with successive choices independent. A typical
message from this source is then:
AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive symbols are
not chosen independently but their probabilities depend on preced
ing letters. In the simplest case of this type a choice depends only
on the preceding letter and not on ones before that. The statistical
structure can then be described by a set of transition probabilities
p/}), the probability that letter i is followed by letter j. The in
dices i and} range over all the possible symbols. A second equiv
alent way of specifying the structure is to give the "digram" prob
abilities p(i, j), i.e., the relative frequency of the digram i j. The
letter frequencies p(i), (the probability of letter i), the transition
probabilities p;(j) and the digram probabilities p(i, j) are related by
the following formulas.

p(i) = L p(i, j) = L pel, i)
i i

p(i,.i) = p(i)p;(j)

L p;(j) = L p(i) = L p(i, j) = 1.
i i i.i

As a specific example suppose there are three letters A, H, C with the prob-
ability tables:

p;(j) .1 p(i) p(i, j) J
A B C A B C

A 0 4 1 A 9 A 0 4 1
:5 :5 T'r TO nr

'~ B 1 1 0 B 16 B 8 8 0"2 2 '2'1' T'r '2''1'

C 1 2 ...L C 2 C 1 4 1
"2 :5 10 '2'1' '2''1' TIK TIll'

A typical message from this source is the following:
ABBABABABABABABBBABBBBBAB
ABABABABBBACACABBABBBBABB
ABACBBBABA
The next increase in complexity would involve trigram frequencies
but no more. The choice of a letter would depend on the preceding
two letters but not on the message before that point. A set of tri
gram frequencies pU, j, k) or equivalently a set of transition prob-
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abilities Pij(k) would be required. Continuing in this way one ob
tains successively more complicated stochastic processes. In the
general it-gram case a set of n-gram probabilities p(i1 , i 2 , ••• , in)
or of transition probabilities pi,. i" ,,, .• i,,_Jin ) is required to
specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text con
sisting of a sequence of "words." Suppose there are five letters
A, B, C, D, E and 16 "words" in the language with associated
probabilities:

.10 A

.04ADEB

.05 ADEE

.01 BADD

.16 BEBE

.04 BED

.02 BEED

.05 CA

.11 CABED

.05 CEED

.08 DAB

.04 DAD

.04 DEB

.15 DEED

.01 EAB

.05EE

Suppose successive "words" are chosen 'independently and are
separated by a space. A typical message might be:
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE
BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED
DEED BEBE CABED BEBE BED DAB DEED ADEB
If all the words are of finite length this process is equivalent to one
of the preceding type, but the description may be simpler in terms
of the word structure and probabilities. We may also generalize
here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and
examples to illustrate various possibilities. We can also approximate to a
natural language by means of a series of simple artificial languages. The
zero-order approximation is obtained by choosing all letters with the same
probability and independently. The first-order approximation is obtained
by choosing successive letters independently but each letter having the
same probability that it does in the natural language.! Thus, in the first
order approximation to English, E is chosen with probability .12 (its fre
quency in normal English) and \\' with probability .02, but there is no in
fluence between adjacent letters and no tendency to form the preferred
digrams such as TH, ED, etc. In the second-order approximation, digram
structure is introduced. After a letter is chosen, the next one is chosen in
accordance with the frequencies with which the various letters follow the
first one. This requires a table of digram frequencies P.(j). In the third
order approximation, trigram structure is introduced. Each letter is chosen
with probabilities which depend on the preceding two letters.

6 Letter, digram and trigram frequencies are given in "Secret and Urgent" by Fletcher
Pratt, Blue Ribbon Books 1939. Word frequencies are tabulated in "Relative Frequency
of English Speech Sounds," G. Dewey, Harvard University Press, 1923,
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3. THE SERIES OF ApPROXIMATIONS TO ENGLISH

To give a visual idea of how this series of processes approaches a language,
typical sequences in the approximations to English have been constructed
and are given below. In all cases we have assumed a 27-symbol "alphabet,"
the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi-probable).
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation (symbols independent but with frequencies
of English text).

OCRO IlLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl
ALHENHTTPA OOBTTVA NAH BRL

3. Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation (trigram structure as in English).
IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

5. First-Order Word Approximation. Rather than continue with tetra
gram, ... , II-gram structure it is easier and better to jump at this
point to word units. Here words are chosen independently but with
their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR
COME CAN DIFFERENT NATURAL HERE HE THE A IN
CAME THE TO OF TO EXPERT GRAY COME TO FUR
NISHES THE LINE MESSAGE HAD BE THESE.

6. Second-Order Word Approximation. The word transition probabil-
ities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
\\'RITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED

The resemblance to ordinary English text increases quite noticeably at
each of the above steps. Note that these samples have reasonably good
structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text
for two-letter sequence, but four-letter sequences from the sample can
usually be fitted into good sentences. In (6) sequences of four or more
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words can easily be placed in sentences without unusual or strained con
structions. The particular sequence of ten words "attack on an English
writer that the character of this" is not at all unreasonable. It appears
then that a sufficiently complex stochastic process will give a satisfactory
representation of a discrete source.

The first two samples were constructed by the use of a book of random
numbers in conjunction with (for example 2) a table of letter frequencies.
This method might have been' continued for (3), (-l), and (5), since digram,
trigram, and word frequency tables are available, but a simpler equivalent
method was used. To construct (3) for example, one opens a book at ran
dom and selects a letter at random on the page. This letter is recorded.
The book is then opened to another page and one reads until this letter is
encountered. The succeeding let tel' is then recorded. Turning to another
page this second letter is searched for and the succeeding Jetter recorded,
etc. A similar process was used for (-l), (5), and (6). It would be interest
ing if further approximations could be constructed, hut the labor involved
becomes enormous at the next stage.

4. GRAPIDCAL RF.PRESEj\;TATIOloi OF A MARKOFF PROCESS

Stochastic processes of the type described above are known mathe
matically as discrete Markoff processes and have been extensively studied in
the literature," The general case can be described as follows: There exist a
finite number of possible "states" of a system; 51 , 5~ , ... , 5". In addi
tion there is a set of transition probabilities; piCj) the probability that if the
system is in state 5 i it will next go to state Sj. To make this Markoff
process into an information source we need only assume that a letter is pro
duced for each transition from one state to another. The states will corre
spond to the "residue of influence" from preceding letters.

The situation can be represented graphically as shown in Figs. 3,4 and 5.
The "states" are the junction points in the graph and the probabilities and
letters produced for a transition are given beside the corresponding line.
Figure 3 is for the example n in Section 2, while Fig. .J corresponds to the
example C, In Fig. 3 there is only one state since successive letters are
independent. In Fig. -l there are as many states as letters. If a trigram
example were constructed there would be at most Jl2 states corresponding
to the possible pairs of letters preceding the one being chosen. Figure 5
is a graph for the case of word structure in example D. Here S corresponds
to the "space" symbol.

6 For a detailed treatment sec M. Frechet , "Methods des Ionctions arbitraires. Theorie
des enenemcnts en chaine dans Ie cas el'un nombre tini d'etats possibles." Paris, Gauthier
Villars, 19M!,
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5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be con
sidered to be represented by a Markoff process. Among the possible discrete
Markoff processes there is a group with special properties of significance in

~
. A ' I B

E .2

.1 C

o .~

Fig. 3-A graph corresponding to the source in example B.

C
.1

Fig. 4-A graph corresponding to the source in example C.

Fig. S-A graph corresponding to the source in example D.

communication theory. This special class consists of the "ergodic" proc
esses and we shall call the corresponding sources ergodic sources. Although
a rigorous definition of an ergodic process is somewhat involved, the general
idea is simple. In an ergodic process every sequence produced by the proc-
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ess is the same in statistical properties. Thus the letter frequencies,
digram frequencies, etc., obtained from particular sequences will, as the
lengths of the sequences increase, approach definite limits independent of
the particular sequence. Actually this is not true of every sequence but the
set for which it is false has probability zero. Roughly the ergodic property
means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This
property is related to the structure of the corresponding graph. If the graph
has the following two properties' the corresponding process will be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is
impossible to go from junction points in part A to junction points in
part B along lines of the graph in the direction of arrows and also im
possible to go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing
in the same orientation will be called a "circuit." The "length" of a
circuit is the number of lines in it. Thus in Fig. 5 the series BEBES
is a circuit of length 5. The second property required is that the
greatest common divisor of the lengths of all circuits in the graph be
one.

If the first condition is satisfied but the second one violated by having the
greatest common divisor equal to d > 1, the sequences have a certain type
of periodic structure. The various sequences fan into d different classes
which are statistically the same apart from a shift of the origin (i.e., which
letter in the sequence is called letter 1). By a shift of from 0 up to d - 1
any sequence can be made statistically equivalent to any other. A simple
example with d = 2 is the following: There are three possible letters a, b, c.
Letter a is followed with either b or c with probabilities t and t respec
tively. Either b or c is always followed by letter a. Thus a typical sequence
is

abacacacabacababacac

This type of situation is not of much importance for our work.
If the lirst condition is violated the graph may be separated into a set of

subgraphs each of which satisfies the first condition. We will assume that
the second condition is also satisfied for each subgraph. We have in this
case what may be called a "mixed" source made up of a number of pure
components. The components correspond to the various subgraphs.
If L1 , Lz , L, , ... are the component sources we may write

where Pi is the probability of the component source L; .
T These arc restatements in terms of the graph of conditions given in Frechet.
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Physically the situation represented is this: There are several different
sources L I , L 2 , L.] , ... which are each of homogeneous statistical structure
(i.e., they are ergodic). We do not know a priori which is to be used, but
once the sequence starts in a given pure component L, it continues indefi
nitely according to the statistical structure of that component.

As an example one may take two of the processes defined above and
assume PI = .2 and P2 = .8. A sequence from the mixed source

would be obtained by choosing first L1 or L 2 with probabilities .2 and .8
and after this choice generating a sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic.
This assumption enables one to identify averages along a sequence with
averages over the ensemble of possible sequences (the probability of a dis
crepancy being zero). For example the relative frequency of the letter A
in a particular infinite sequence will be, with probability one, equal to its
relative frequency in the ensemble of sequences.

If Pi is the probability of state i and Pi(j) the transition probability to
state j, then for the process to be stationary it is clear that the P,. must
satisfy equilibrium conditions:

r, ;", L Pi p,.(j).
i

In the ergodic case it can be shown that with any starting conditions the
probabilities Pj(N) of being in state j after N symbols, approach the equi
librium values as N --'> 00.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process.
Can we define a quantity which will measure, in some sense, how much in
formation is "produced" by such a process, or better, at what rate informa
tion is produced?

Suppose we have a set of possible events whose probabilities of occurrence
are PI , P2 , ... , P»> These probabilities are known but that is all we know
concerning which event will occur. Can we find a measure of how much
"choice" is involved in the selection of the event or of how uncertain we are
of the au tcome?

If there is such a measure, say H(PI , P2 , ... ,pn), it is reasonable to re
quire of it the following properties:

1. H should be continuous in the Pi.
2. If all the Pi are equal, Pi = !, then H should be a monotonic increasing

II
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function of II. With equally likely events there is more choice, or un
certainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated. in Fig. 6. At the left we have three
possibilities PI = !, pz = 1, P:l = i· On the right we first choose be
tween two possibilities each with probability j , and if the second occurs
make another choice with probabilities ~, t. The final results have
the same probabilities as before. 'Ne require, in this special case,
that

H(!,1, i) = /l(!, !) + !H(i, t)
The coefficient! is because this second choice only occurs half the time.

~
/2

I 3

1/&

1/2
1/2

Fig. 6-Decomposition of a choice from three possibilities.

In Appendix II, the following result is established:
Theorem 2: The only H satisfying the three above assumptions is of the
form:

/I

/l = - K L Pi log Pi
i-I

where 1{ is a positive constant.
This theorem, and the assumptions required for its proof, are in no way

necessary for the present theory. It is given chiefly to lend a certain plausi
bility to some of our later definitions. The real justification of these defi
nitions, however, will reside in their implications.

Quantities of the form H = - ~ Pi log Pi (the constant K merely amounts
to a choice of a unit of measure) playa central role in information theory as
measures of information, choice and uncertainty. The form of H will be
recognized as that of entropy as defined in certain formulations of statistical
mechanics' where Pi is the probability of a system being in cell i of its phase
space. II is then, for example, the H in Boltzmann's famous H theorem.
We shall call H = - ~ Pi log Pi the entropy of the set of probabilities

'See, for example, R. Co Tolman, "Principles of Statistical Mechanics." Oxford,
Clarendon, 1931{.
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PI, "', pn. If X is a chance variable we will write H(x) for its entropy;
thus .eis not an argument of a function but a label for a number, to differen
tiate it from H(y) say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities Pand q =
1 - P, namely

H = - (p log P+ q log q)

is plotted in Fig. 7 as a function of p.
The quantity H has a number of interesting properties which further sub

stantiate it as a reasonable measure of choice or information.

/ """ .......-,
/ \

/ \
/ 1\

/ \

/ 1\
I \

) I \
f i \

00 .1 .2 .3 .4 .5 .6 .7 .8 .9 LO
P

Fig. 7-Entropy in the case of two possibilities with probabilities p and (1 - p).
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1. H = 0 if and only if all the Pi but one are zero, this one having the
value unity. Thus only when we are certain of the outcome does H vanish.
Otherwise H is positive.

2. For a given n, H is a maximum and equal to log n when all the Pi are

equal ( i.e., ~). This is also intuitively the most uncertain situation.

3. Suppose there are two events, x and y, in question with m possibilities
for the first and n for the second. Let p(i, j) be the probability of the joint
occurrence of i for the first and j for the second. The entropy of the joint
event is

Ht», y) = - L p(i, j) log p(i, j)
i,j
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while

flex) = - L pU, j) log 1: pU, j)
t., i

H(y) L p(i, j) log 1: pCi, j).
i.j i

It IS easily shown that

tu», y) S ll(x) + H(y)

with equality only if the events are independent (i.e., p(i, j) = p(i) prJ»).
The uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.

4. Any change toward equalization of the probabilities PI , h, ... , pn
increases H. Thus if PI < P2 and we increase PI, decreasing P2 an equal
amount so that PI and P2 are more nearly equal, then H increases. More
generally, if we perform any "averaging" operation on the Pi of the form

p~ = L aiiPi
j

where L au = 1: au = 1,and all au ~ 0, then H increases (except in the
" ispecial case where this transformation amounts to no more than a permuta-

tion of the Pi with l-l of course remaining the same).
5. Suppose there are two chance events :r and y as in 3, not necessarily

independent. For any particular value i that :r can assume there is a con
ditional probability p,{j) that y has the value j. This is given by

. p(i, j)
Pie)~ = L p(i, j) .

j

We define the conditional entrap» of y, 11 r(Y) as the average of the entropy
of )' fur each value of .r, weighted according to the probability of getting
that particular .r. That is

lIr(y) = - L p(i. j) log p/j).
t. j

This quantity measures how uncertain we are of y on the average when we
know .r. Substituting the value of Pi(j) we obtain

lIr(v) = - 1: pU, j) log p(i, j) + L pU, j) log L pU, j)
iii j i

= ut», y) - H(x)

or
H(x, y) = lI(x) + H r(Y)
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The uncertainty (or entropy) of the joint event :l~, y is the uncertainty of x
plus the uncertainty of y when x is known.

6. From 3 and 5 we have

H(x) + H(y) ~ Htx, y) = H(x) + 11;;(y)

Hence

H(y) ~ H iy)

The uncertainty of y is never increased by knowledge of .r, It will be de
creased unless x and yare independent events, in which case it is not changed.

7. THE ENTROPY OF AN INFORMATION SOURCE

Consider a discrete source of the finite state type considered above.
For each possible state i there will be a set of probabilities Pi(j) of pro
ducing the various possible symbols j. Thus there is an entropy H, for
each state. The entropy of the source will be defined as the average of
these H, weighted in accordance with the probability of occurrence of the
states in question:

H = LP,Hi
i

= -,L: Pi p;(j) log pli)
i , j

This is the entropy of the source per symbol of text. If the Markoff proc
ess is proceeding at a definite time rate there is also an entropy per second

H' = LliH;
i

wherej', is the average frequency (occurrences per second) of state i. Clearly

H' = mH

where m is the average number of symbols produced per second. H or H'
measures the amount of information generated by the source per symbol
or per second. If the logarithmic base is 2, they will represent bits per
symbol or per second.

If successive symbols are independent then H is simply - ~ Pi log Pi
where Pi is the probability of symbol i. Suppose in this case we consider a
long message of N symbols. It will contain with high probability about
PIN occurrences of the first symbol, .p2N occurrences of the second, etc.
Hence the probability of this particular message will be roughly

p = tr,N tt" . . .p:n!>'
or
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log P == N L: Pi log Pi

log P == -NIl

11 == l~g liP.
"Y

H is thus approximately the logarithm of the reciprocal probability of a
typical long sequence divided by the number of symbols in the sequence.
The same result holds for any source. Stated more precisely we have (see
Appendix III):
Theorem 3: Given any e > 0 and 0 > 0, we can find an No such that the se
quences of any length 1'/ :::: N" fall into two classes:
1. A set whose total probability is less than E.

2. The remainder, all of whose members have probabilities satisfying the
inequality

[ log (I _ H I < 0
, j\;

log p-l
In other words we are almost certain to have -r very close to H when N

is large.
A closely related result deals with the number of sequences of various

probabilities. Consider again the sequences of length N and let them be
arranged in order of decreasing probability. We define n(q) to be the
number we must take from this set starting with the most probable one in
order to accumulate a total probability q for those taken.
Theorem 4:

L · los, I/(q) H1m --_ ..
.\'~'" .Y

when 'l does not equal 0 or I,
We may interpret log Il(q) as the number of bits required to specify the

sequence when we consider only the most probable sequences with a total

probability q. Then log;~:(lf) is the number of bits per symbol for the

specification. The theorem says that for large N this will be independent of
q and equal to II. The rate of growth of the logarithm of the number of
reasonably probable sequences is given by H, regardless of our interpreta
tion of "reasonably probable." Due to these results, which are proved in
appendix III, it is possible for most purposes to treat the long sequences as
though there were just 2H X of them, each with a probability T H

," .
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The next two theorems show that H and H' can be determined by limit
ing operations directly from the statistics of the message sequences, without
reference to the states and transition probabilities between states.
Theorem 5: Let p( B ,) be the probability of a sequence B i of symbols from
the source. Let

&N = -~. ~ p(B,) log p(B i )

where the sum is over all sequences B; containing N symbols. Then GN

is a monotonic decreasing function of Nand

Lim GN = lI.
N~""

Theorem 6: Let p(B i , Sj) be the probability of sequence B, followed by
symbol S, and PBJSj) = P(Bi ,Sj)/p(B,) be the conditional probability of
s, after Bi. Let

FN = - L: p(B i , Sj) log tB, (Sj)
i, i

where the sum is over all blocks B, of N - 1 symbols and over all symbols
Sj. Then FN is a monotonic decreasing function of N,

1 n

GN = Nlt FH ,

FN :=:; GN ,

and Lim FN = H.

These results are derived in appendix III. They show that a series of
approximations to H can be obtained by considering only the statistical
structure of the sequences extending over 1, 2, ... N symbols. PN is the
better approximation. In fact FN is the entropy of the NIh order approxi
mation to the source of the type discussed above. If there are no statistical
influences extending over more than N symbols, that is if the conditional
probability of the next symbol knowing the preceding (N - 1) is not
changed by a knowledge of any before that, then FN = H. FN of course is
the coriditional entropy of the next symbol when the (N - 1) preceding
ones are known, while GN is the entropy per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it could have
while still restricted to the same symbols will be called its relative ell/ropy.
This is the maximum compression possible when we encode into the same
alphabet. One minus the relative entropy is the redundancy. The redun-
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dancy of ordinary English, not considering statistical structure over greater
distances than about eight letters is roughly 50%. This means that when
we write English half of what we write is determined by the structure of the
language and half is chosen freely. The figure 50% was found by several
independent methods which all gave results in this neighborhood. One is
by calculation of the entropy of the approximations to English. A second
method is to delete a certain fraction of the letters from a sample of English
text and then let someone attempt to restore them. If they can be re
stored when 50% are deleted the redundancy must be greater than 50%.
A third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic
English and by James Joyces' book "Finigans Wake." The Basic English
vocabulary is limited to 850 words and the redundancy is very high. This
is reflected in the expansion that occurs when a passage is translated into
Basic English. Joyce on the' other hand enlarges the vocabulary and is
alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword
puzzles. If the redundancy is zero any sequence of letters is a reasonable
text in the language and any two dimensional array of letters forms a cross
word puzzle, If the redundancy is too high the language imposes too
many constraints for large crossword puzzles to be possible. A more de
tailed analysis shows that if we assume the constraints imposed by the
language are of a rather chaotic and random nature, large crossword puzzles
are just possible when the redundancy is 50%. If the redundancy is 33%,
three dimensional crossword puzzles should be possible, etc.

8. REPRESE1\TATIOK OF THE EKCODIKG AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by
the transmitter and receiver in encoding and decoding the information.
Either of these will be called a discrete transducer. The input to the
transducer is a sequence of input symbols and its output a sequence of out
put symbols. The transducer may have an internal memory so that its
output depends not only on the present input symbol but also on the past
history. We assume that the internal memory is finite, i.e. there exists
a finite number 111 of possible states of the transducer and that its output is
a function of the present state and the present input symbol. The next
state will be a second function of these two quantities. Thus a transducer
can be described by two functions:

Yn = f(xn , an)
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where: :rn is the II l h input symbol,
an is the state of the transducer when the 11

t h input symbol is introduced,
Yn is the output symbol (or sequence of output symbols) produced when

::\~n is introduced if the state is an.

If the output symbols of one transducer can be identified with the input
symbols of a second, they can be connected in tandem and the result is also
a transducer. If there exists a second transducer which operates on the out
put of the first and recovers the original input, the first transducer will be
called non-singular and the second will be called its inverse.
Theorem 7: The output of a finite state transducer driven by a finite state
statistical source is a finite state statistical source, with entropy (per unit
time) less than or equal to that of the input. If the transducer is non
singular they are equal.

Let a represent the state of the source, which produces a sequence of
symbols Xi ; and let {3 be the state of the transducer, which produces, in its
output, blocks of symbols Yi. The combined system can be represented
by the "product state space" of pairs (a, (3). Two points in the space,
(ai, (31) and (a2 (32), are connected by a line if al can produce an x which
changes {31 to {32 , and this line is given the probability of that x in this case.
The line is labeled with the block of Yi symbols produced by the transducer.
The entropy of the output can be calculated as the weighted sum over the
states. If we sum first on {3 each resulting term is less than or equal to the
corresponding term for a, hence the entropy is not increased. If the trans
ducer is non-singular let its output be connected to the inverse transducer.
If H~ , H~ and H~ are the output entropies of the source, the first and
second transducers respectively, then H~ ;::: H~ ;::: II~ = H~ and therefore
H; = H~.

Suppose we have a system of constraints on possible sequences of the type
which can be represented by a linear graph as in Fig. 2. If probabilities
pi'/ were assigned to the various lines connecting state ito statej this would
become a source. There is one particular assignment which maximizes the
resulting entropy (see Appendix IV).
Theorem 8: Let the system of constraints considered as a channel have a
capacity C. If we assign

p)'/ = Bi Cl:j)
B i

where eli) is the duration of the sth symbol leading from state i to state j
and the B; satisfy •

then H is maximized and equal to C.
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By proper assignment of the transition probabilities the entropy of sym
bols on a channel can be maximized at the channel capacity.

9. THE FUNDAMF:NTAL THF:OREM FOR A NOISELESS ClL4.NNEL

We will now justify our interpretation of H as the rate of generating
information by proving that H determines the channel capacity required
with most efficient coding.
Theorem 9: Let a source have entropy H (bits per symbol) and a channel
have a capacity C (bits per second). Then it is possible to encode the output

of the source in such a way as to transmit at the average rate ~ - E symbols

per second over the channel where E is arbitrarily small. It is not possible
. h Cto transmit at an average rate greater t an H'

CThe converse part of the theorem, that H cannot be exceeded, may be

proved by noting that the entropy of the channel input per second is equal
to that of the source, since the transmitter must be non-singular, and also
this entropy cannot exceed the channel capacity. Hence H' ~ C and the
number of symbols per second = H' / H < C/ II.

The first part of the theorem will be proved in two different ways. The
first method is to consider the set of all sequences of N symbols produced by
the source. For N large we can divide these into two groups, one containing
less than 2([{+~l x members and the second containing less than 2R N members
(where R is the logarithm of the number of different symbols) and having a
total probability less than u, As N increases "7 and p. approach zero. The
number of signals of duration T in the channel is greater than iC-())T with
(J small when T is large. If we choose

T = (~+ >-) N

then there will be a sufficient number of sequences of channel symbols for
the high probability group when Nand T are sufficiently large (however
small >-) and also some additional ones. The high probability group is
coeledin an arbitrary one to one way into this set. The remaining sequences
are represented by larger sequences, starting and ending with one of the
sequences not used for the high probability group. This special sequence
acts as a start and stop signal for a different code. In between a sufficient
time is allowed to give enough different sequences for all the low probability
messages. This will require

1\ = (~+ ~) N
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where <p is small. The mean rate of transmission in message symbols per
second will then be greater than

[(l - 0) ~ + 0~JI = [(l - 0) (g + X) + 0 (~ + <p)JI
As N increases 0, Xand cp approach zero and the rate approaches~ .

Another method of performing this coding and proving the theorem can
be described as follows: Arrange the messages of length N in order of decreas
ing probability and suppose their probabilities are PI ;:::: P2 ;:::: pa ... ;:::: pn .

• -1

Let P, = L Pi j that is P, is the cumulative probability up to, but not
1

iLldllding, P.. We first encode into a binary system. The binary code for
message s is _obtained by expanding P, as a binary number. The expansion
is carried out to m, places, where m, is the integer satisfying:

1 1
log2 - < m, < 1 + logs -P. - p.

Thus the messages of high probability are represented by short codes and
those of low probability by long codes. From these inequalities we have

The code for P. will differ from all succeeding ones in one or more of its

m, places, since all the remaining Pi are at least _1_ larger and their binary
2111s

expansions therefore differ in the first m, places. Consequently all the codes
are different and it is possible to recover the message from its code. If the
channel sequences are not already sequences of binary digits, they can be
ascribed binary numbers in an arbitrary fashion and the binary code thus
translated into signals suitable for the channel.

The average number H' of binary digits used per symbol of original mes
sage is easily estimated. We have

H ' 1",= N ~m.p.

But,

1 ( 1) 1 1 ( 1)N ~ log, P. p. ~ N »«.P. < N ~ 1 + log, P. P.

and therefore,
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-~p.log r. ~ H' < l~ - ~p. log p.

As N increases -~p. log P. approaches H, the entropy of the source and H'
approaches H.

We see from this that the inefficiency in coding, when only a finite delay of

N symbols is used, need not be greater than ~ plus the difference between

the true entropy H and the entropy GN calculated for sequences of length N.
The per cent excess time needed over the ideal is therefore less than

This method of encoding is substantially the same as one found inde
pendently by R. M. Fano." His method is to arrange the messages of length
N in order of decreasing probability. Divide this series into two groups of
as nearly equal probability as possible. If the message is in the first group
its first binary digit will be 0, otherwise 1. The groups are similarly divided
into subsets of nearly equal probability and the particular subset determines
the second binary digit. This process is continued until each subset contains
only one message. It is easily seen that apart from minor differences (gen
erally in the last digit) this amounts to the same thing as the arithmetic
process described above.

10. DISCUSSION

In order to obtain the maximum power transfer from a generator to a load
a transformer must in general be introduced so that the generator as seen
from the load has the load resistance. The situation here is roughly anal
ogous. The transducer which does the encoding should match the source
to the channel in a statistical sense. The source as seen from the channel
through the transducer should have the same statistical structure as the
source which maximizes the entropy in the channel. The content of
Theorem 9 is that, although an exact match is not in general possible, we can
approximate it as closely as desired. The ratio of the actual rate of trans
mission to the capacity C may be called the efficiency of the coding system.
This is of course equal to the ratio of the actual entropy of the channel
symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the
transmitter and receiver. In the noiseless case which we have been
considering. the main function of this delay is to allow reasonably good

"Technical Report Xo. 65. TIll' Research l.aborutorv of Electronics. ~r. T. T.
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matching of probabilities to corresponding lengths of sequences. With a
good code the logarithm of the reciprocal probability of a long message
must be proportional to the duration of the corresponding signal, in fact

II -I I.»»: - clT .

must be small for all but a small fraction of the long messages.
If a source can produce only one particular message its entropy is zero,

and no channel is required. For example, a computing machine set up to
calculate the successive digits of 71" produces a definite sequence with no
chance element. No channel is required to "transmit" this to another
point. One could construct a second machine to compute the same sequence
at the point. However, this may be impractical. In such a case we can
choose to ignore some or all of the statistical knowledge we have of the
source. We might consider the digits of 71" to be a random sequence in that
we construct a system capable of sending any sequence of digits. In a
similar way we may choose to use some of our statistical knowledge of Eng
lish in constructing a code, but not all of it. In such a case we consider the
source with the maximum entropy subject to the statistical conditions we
wish to retain. The entropy of this source determines the channel capacity
which is necessary and sufficient. In the 71" example the only information
retained is that all the digits are chosen from the set 0, 1, ... , 9. In the
case of English one might wish to use the statistical saving possible due to
letter frequencies, but nothing else. The maximum entropy source is then
the first approximation to English and its entropy determines the required
channel capacity.

11. EXAMPLES

As a simple example of some of these results consider a source which
produces a sequence of letters chosen from among A, B, C, D with prob
abilities t, t, 1, 1, successive symbols being chosen independently. We
have

H = - (! log t + t log t + ~ log 1)

= t bits per symbol.

Thus we can approximate a coding system to encode messages from tbis
source into binary digits with an average of t binary digit per symbol.
In this case we can actually achieve the limiting value by the following code
(obtained by the method of the second proof of Theorem 9):
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A 0
R 10
C 110
f) 111

The average number of binary digits used in encoding a sequence of N sym
bols will be

N(~ X 1 +1 X 2 + *X 3) = iN

It is easily seen that the binary digits 0, 1 have probabilities i, t so the H for
the coded sequences is one bit per symboL Since, on the average, we have {
binary symbols per original letter, the entropies on a time basis are the
same. The maximum possible entropy for the original set is log 4 = 2,
occurring when .1, B, C, D have probabilities tit t, t. Hence the relative
entropy is i. We can translate the binary sequences into the original set of
symbols on a two-to-one basis by the following table:

00 A'
01 R'
10 C'
11 D'

111is double process then encodes the original message into the same symbols
but with an average compression ratio ~ .

As a second example consider a source which produces a sequence of .l 's
and h's with probability p for..1 and q for F. If P< < q we have

H = -log p"(l _ p)'-P

-p log P (1- p)(I-,.lll,

c
- P log

P
In such a case one can construct a fairly good coding of the message on a
1I, 1 channel by sending a special sequence, say 0000, for the infrequent
symbol .1 and then a sequence indicating the number of B's following it.
This could be indicated by the binary representation with all numbers con
taining the special sequence deleted. All numbers up to 16 are represented
as usual; 16 is represented by the next binary number after 16 which does
not contain four zeros, namely l ? = 10001, etc.

It can be shown that as p ----> 0 the coding approaches ideal provided the
length of the special sequence is properly adjusted.
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PART II: THE DISCRETE CHA~NEL WITH NOISE

11. REPRESEJ>;TATIOX OF A NOISY DISCRETE CHANNEL

We now consider the case where the signal is perturbed by noise during
transmission or at one or the other of the terminals. This means that the
received signal is not necessarily the same as that sent out by the trans
mitter. Two cases may be distinguished. If a particular transmitted signal
always produces the same received signal, i.e. the received signal is a definite
function of the transmitted signal, then the effect may be called distortion.
If this function has an inverse-no two transmitted signals producing the
same received signal-distortion may be corrected, at least in principle, by
merely performing the inverse functional operation on the received signal.

The case of interest here is that in which the signal does not always undergo
the same change in transmission. In this case we may assume the received
signal E to be a function of the transmitted signal S and a second variable,
the noise N.

E = j(S, N)

The noise is considered to be a chance variable just as the message was
above. In general it may be represented by a suitable stochastic process.
The most general type of noisy discrete channel we shall consider is a general
ization of the finite state noise free channel described previously. We
assume a finite number of states and a set of probabilities

This is the probability, if the channel is in state IX and symbol i is trans
mitted, that symbol j will be received and the channel left in state {3. Thus
IX and (3 range over the possible states, i over the possible transmitted signals
and j over the possible received signals. In the case where successive sym
bols are independently perturbed by the noise there is only one state, and
the channel is described by the set of transition probabilities pdj), the prob
ability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical processes at
work: the source and the noise. Thus there are a number of entropies that
can be calculated. First there is the entropy H(x) of the source or of the
input to the channel (these will be equal if the transmitter is non-singular).
The entropy of the output of the channel, i.e. the received signal, will be
denoted by H(y). In the noiseless case H(y) = H(x). The joint entropy of
input and output will be H(xy). Finally there are two conditional entro
pies Hiy) and H)'(x), the entropy of the output when the input is known
and conversely. Among these quantities we have the relations

H(x, y) = H(x) + HAy) = H(y) + Hy(x)
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All of these entropies can be measured on a per-second or a per-symbol
basis.

12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the orig
inal message or the transmitted signal with certainty by any operation on the
received signal E. There are, however, ways of transmitting the information
which are optimal in combating noise. This is the problem which we now
consider.

Suppose there are two possible symbols 0 and 1, and we are transmitting
at a rate of 1000 symbols per second with probabilities po = PI = !. Thus
our source is producing information at the rate of 1000bits per second. Dur
ing transmission the noise introduces errors so that, on the average, 1 in 100
is received incorrectly (a aas 1, or 1 as 0). What is the rate of transmission
of information? Certainly less than 1000 bits per second since about 1%
of the received symbols are incorrect. Our first impulse might be to say the
rate is 990 bits per second, merely subtracting the expected number of errors.
This is not satisfactory since it fails to take into account the recipient's
lack of knowledge of where the errors occur. We may carry it to an extreme
case and suppose the noise so great that the received symbols are entirely
independent of the transmitted symbols. The probability of receiving 1 is
! whatever was transmitted and similarly for D. Then about half of the
received symbols are correct due to chance alone, and we would be giving
the system credit for transmitting SOO bits per second while actually no
information is being transmitted at all. Equally "good" transmission
would be obtained by dispensing with the channel entirely and flipping a
coin at the receiving point.

Evidently the proper correction to apply to the amount of information
transmitted is the amount of this information which is missing in the re
ceived signal, or alternatively the uncertainty when we have received a
signal of what was actually sent. From our previous discussion of entropy
as a measure of uncertainty it seems reasonable to use the conditional
entropy of the message, knowing the received signal, as a measure of this
missing information. This is indeed the proper definition, as we shall see
later. Following this idea the rate of actual transmission, R, would be ob
tained by subtracting from the rate of production (i.e., the entropy of the
source) the average rate of conditional entropy.

R = H(x) - Hy(x)

The conditional entropy Hy(x) will, for convenience, be called the equi
vocation. It measures the average ambiguity of the received signal.
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In the example considered above, if a 0 is received the a posteriori prob
ability that a 0 was transmitted is .99, and that a 1 was transmitted is
.01. These figures are reversed if a 1 is received. Hence

Hy(x) = - [.99 log .99 + 0.01 log 0.01]

= .081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate'
1000 - 81 = 919 bits per second. In the extreme case where a 0 is equally
likely to be received as a 0 or 1 and similarly for 1, the a posteriori proba
bilities are !, ! and

H,,(x) = - f~ log! + ! log !l
1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it should
be.

The following theorem gives a direct intuitive interpretation of the
equivocation and also serves to justify it as the unique appropriate measure.
We consider a communication system and an observer (or auxiliary device)
who can see both what is sent and what is recovered (with erro.s
due to noise). This observer notes the errors in the recovered message and
transmits data to the receiving point over a "correction channel" to enable
the receiver to correct the errors. The situation is indicated schematically
in Fig. 8.
Theorem 10: If the correction channel has a capacity equal to H .(x) it is

, possible to so encode the correction data as to send it over this channel
and correct all but an arbitrarily small fraction E of the errors. This is not
possible if the channel capacity is less than H,,(:x) ,

Roughly then, HyCr) is the amount of additional information that must be
supplied per second at the receiving point to correct the received message.

To prove the first part, consider long sequences of received message M'
and corresponding original message M. There will be logarithmically
TH,,(x) of the M's which could reasonably have produced each M'. Thus
we have TH,,(x) binary digits to send each T seconds. This can be done
with E frequency of errors on a channel of capacity H,,(x).

The second part can be proved by noting, first, that for any discrete chance
variables x, y, :::

lIu(x, s) ~ Hy(.\")

The left-hand side can be expanded to give

HA:::) + IIy . (;>:) 2:
Huz(x) ~ Hy(x) Hy(z) 2:

H,l>:)

HJ>:) H(s)
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If we identify .r as the output of the source, y as the received signal and s
as the signal sent over the correction channel, then the right-hand side is the
equivocation less the rate of transmission over the correction channel. If
the capacity of this channel is less than the equivocation the right-hand side
will be greater than zero and III,z(x) ~ O. But this is the uncertainty of
what was sent, knowing both the received signal and the correction signal.
If this is greater than zero the frequency of errors cannot be arbitrarily
small.
Example:

Suppose the errors occur at random in a sequence of binary digits: proba
bility p that a digit is wrong and q = 1 - Pthat it is right. These errors
can be corrected if their position is known. Thus the correction channel
need only send information as to these positions. This amounts to trans-

CORRECTION DATA

I

OBSERVER

-'-- ~';- ~
M

50URCE TRAN5MITTER RECEIVER CORRECTING
DEVICE

Fig. H-Schcmatic diagram of a correction system.

milling from a source which produces binary digits with probability p for
1 (correct) and If for 0 (incorrect). This requires a channel of capacity

- [p log P+ q log q]

which is the equivocation of the original system.
The rate of transmission R can he written in two other forms due to the

identities noted above. \\'e have

R = H(x) - H,/r)

H(y) - Hz(y)

H(x) + H(y) - H(x, y).

The first defining expression has already been interpreted as the amount of
information sent less the uncertainty of what was sent. The second meas-
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ures the amount received less the part of this which is due to noise. The
third is the sum of the two amounts less the joint entropy and therefore in a
sense is the number of bits per second common to the two. Thus all three
expressions have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum possible rate
of transmission, i.e., the rate when the source is properly matched to the
channel. We therefore define the channel capacity by

C = Max (H(x) - Hy(x))

where the maximum is with respect to all possible information sources used
as input to the channel. If the channel is noiseless, Hy(x) = O. The defini
tion is then equivalent to that already given for a noiseless channel since the
maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR A DISCRETE CHAN1\'EL WITH

NOISE

It may seem surprising that we should define a definite capacity C for
a noisy channel since we can never send certain information in such a case.
It is clear, however, that by sending the information in a redundant form the
probability of errors can be reduced. For example, by repeating the
message many times and by a statistical study of the different received
versions of the message the probability of errors could be made very small.
One would expect, however, that to make this probability of errors approach
zero, the redundancy of the encoding must increase indefinitely, and the rate
of transmission therefore approach zero. This is by no means true. If it
were, there would not be a very well defined capacity, but only a capacity
for a given frequency of errors, or a given equivocation; the capacity going
down as the error requirements are made more stringent. Actually the
capacity C defined above has a very definite significance. It is possible
to send information at the rate C through the channel toitl: as small a fre
quency of errors or equivocation as desired by proper encoding. This state
ment is not true for any rate greater than C. If an attempt is made to
transmit at a higher rate than C, say C + R1 , then there will necessarily
be an equivocation equal to a greater than the excess R1 • Nature takes
payment by requiring just that much uncertainty, so that we are not
actually getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into the
channel is plotted horizontally and the equivocation vertically. Any point
above the heavy line in the shaded region can be attained and those below
cannot. The points on the line cannot in general be attained, but there will
usually be two points on the line that can.
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These results are the main justification for the definition of C and will
now be proved.
Theorem 11. Let a discrete channel have the capacity C and a discrete
source the entropy per second H: If H ~ C there exists a coding system
such that the output of the source can be transmitted over the channel with
an arbitrarily small frequency of errors (or an arbitrarily small equivocation).
If H > C it is possible to encode the source so that the equivocation is less
than H - C + E where E is arbitrarily small. There is no method of encod
ing which gives an equivocation less than II - C.

The method of proving the first part of this theorem is not by exhibiting
a coding method having the desired properties, but by showing that such a
code must exist in a certain group of codes. In fact we will average the
frequency of errors over this group and show that this average can be made
less than E. If the average of a set of numbers is less than E there must
exist at least one in the set which is less than E. This will establish the
desired result.

Fig. 9-The equivocation possible for a given input entropy to a channel.

The capacity C of a noisy channel has been defined as

C = Max (H(x) - Hiler))

where .r is the input and y the output. The maximization is over all sources
which might be used as input to the channel.

Let So be a source which achieves the maximum capacity C. If this
maximum is not actually achieved hy any source let So be a source which
approximates to givinl!: the maximum rate. Suppose So is used as input to
the channel. We consider the possible transmitted and received sequences
of a long duration T. The following will be true:
1. The transmitted sequences fall into two classes, a high probability group
with about 2Til (I) members and the remaining sequences of small total
probability.
2. Similarly the received sequences have a high probability set of about
21

' 1/ ( 111 members and a low probability set of remaining sequences.
3. Each high probability output could be produced by about 2T H

" i Z l inputs.
The probability of aII ot her cases has a small total probability.
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All the E'S and /j's implied by the words "small" and "about" in these
statements approach zero as we allow T to increase and So to approach the
maximizing source.

The situation is summarized in Fig. 10 where the input sequences are
points on the left and output sequences points on the right. The fan of
cross lines represents the range of possible causes for a typical output.

Now suppose we have another source producing information at rate R
with R < c. In the period T this source will have 27

' // high probability
outputs. We wish to associate these with a selection of the possible channe

E
•
•

M• •
• •

•
ZH("l()T •

HIGH PROBABILITY
ZH(y)TMESSAGES

2 Hy(X)T • HIGH PROBABILITY
RECEIVED SIGNAL:;

REASONABLE CAUSES •
fOR EACH E• •

• •

~~
2

• REASONABLE EffE:CTS.
fROM EACH M

•
Fig. IO-Schematic representation of the relations between inputs and outputs in a

channel.

inputs in such a way as to get a small frequency of errors. We will set up
this association in all possible ways (using, however, only the high proba
bility group of inputs as determined by the source So) and average the fre
quency of errors for this large class of possible coding systems. This is the
same as calculating the frequency of errors for a random association of the
messages and channel inputs of duration T. Suppose a particular output
Yl is observed. What is the probability of more than one message in the set
of possible causes of Yl? There are 2T R messages distributed at random in
2T

I/ ( x ) points. The probability of a particular point being a message is
thus
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The probability that none of the points in the fan is a message (apart from
the actual originating message) is

P = [1 - ZT(R-U(r»j2TH.(rl

Now R < H(x)
Consequently

Hix} so R H(x) = - Hy(x) - '1/ with '1/ positive.

approaches (as T ---7 oc)

Hence the probability of an error approaches zero and the first part of the
theorem is proved.

The second part of the theorem is easily shown by noting that we could
merely send C bits per second from the source, completely neglecting the
remainder of the information generated. At the receiver the neglected part
gives an equivocation II(x) - C and the part transmitted need only add e.
This limit can also be attained in many other ways, as will be shown when we
consider the continuous case.

The last statement of the theorem is a simple consequence of our definition
of C. Suppose we can encode a source with R = C + a in such a way as to
obtain an equivocation IIi.l') = u - e with t positive. Then R = H(x) =
(. + a and

H(x) HI/(.I') = C + t

with e posiuve. This contradicts the definition of C as the maximum of
1/(.1') - Hi·d.

Actually more has been proved than was stated in the theorem. If the
average of a set of numbers is within t of their maximum, a fraction of at
most ~can be more than y;below the maximum. Since t is arbitrarily
small we can say that almost all the systems are arbitrarily close to the ideal.

1-1. DISCUSSIOl\;

The demonstration of theorem 11, while not a pure existence proof, has
some of the deficiencies of such proofs. An attempt to obtain a good
approximation to ideal coding by following the method of the proof is gen
erally impractical. In fact, apart from some rather trivial cases and
certain limiting situations, no explicit description of a series of approxima
tion to the ideal has been found. Probably this is no accident but is related
to the difficulty of giving an explicit construction for a good approximation
to a random sequence.
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An approximation to the ideal would have the property that if the signal
is altered in a reasonable way by the noise, the original can still be recovered.
Tn other words the alteration will not in general bring it closer to another
reasonable signal than the original. This is accomplisher! at the cost of a
certain amount of redundancy in the coding. The redundancy must be
introduced in the proper way to combat the particular noise structure
involved. However, any redundancy in the source will usually help if it is
utilized at the receiving point. In particular, if the source already has a
certain redundancy and no attempt is made to eliminate it in matching to the
channel, this redundancy will help combat noise. For example, in a noiseless
telegraph channel one could save about 50% in time by proper encoding of
the messages. This is not done and most of the redundnacy of English
remains in the channel symbols. This has the advantage, however, of
allowing considerable noise in the channel. A sizable fraction of the letters
can be received incorrectly and still reconstructed by the context. In
fact this is probably not a bad approximation to the ideal in many cases,
since the statistical structure of English is rather involved and the reasonable
English sequences are not too far (in the sense required for theorem) from a
random selection.

As in the noiseless case a delay is generally required to approach the ideal
encoding. It now has the additional function of allowing a large sample of
noise to affect the signal before any judgment is made at the receiving point
as to the original message. Increasing the sample size always sharpens the
possible statistical assertions.

The content of theorem 11 and its proof can be formulated in a somewhat
different way which exhibits the connection with the noiseless case more
clearly. Consider the possible signals of duration T and suppose a subset
of them is selected to be used. Let those in the subset all be used with equal
probability, and suppose the receiver is constructed to select, as the original
signal, the most probable cause from the subset, when a perturbed signal
is received. We define N(T, q) to be the maximum number of signals we
can choose for the subset such that the probability of an incorrect inter
pretation is less than or equal to q.

TI iz. L' log N(T, q) - C' hteorem z : rm ---1'-- - " were C IS the channel capacity, pro-
1·_00

vided that q does not equal 0 or I.
In other words, no matter how we set our limits of reliability, we can

distinguish reliably in time T enough messages to correspond to about CT
bits, when T is sufficiently large. Theorem 12 can be compared with the
definition of the capacity of a noiseless channel given in section 1.



.If..( 1'lIlLlfAn('.-tL 1'HHOl<r OF ('OMMeNlCAnON ·U5

IS. EXAMPLE OF A DISCRETE l'IJAKNEL AND ITs CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There
are three possible symbols. The first is never affected by noise. The second
and third each have probability p of coming through undisturbed, and q
of being changed into the other of the pair. We have (letting a = - [p log

•

TRANSMITTED
SYMBOLS

•

RECEIVED
SYMBOLS

Fig. l1-E:xampl~ of a discrete channel.

p + q log q) and P and Q be the probabilities of using the first or second
symbols)

Her) = -PlogP - 2Q log Q

lIlI(;r) = 2Qa

We wish to choose P and Q in such a way as to maximize H(x) - Hix) ,
subject to the constraint P + 2Q = 1. Hence we consider

I' = - P log P - 2(1 log Q - 2Qa + "A(P + 2(»

of
- = -1 - lew. P + "A = 0aP e-

oc
aQ = - 2 - 2 log Q - 2a + 2"A = o.

Eliminating "A

log P = log Q + a

P = Qe" = (J{3

I ) - {3
{3 + 2

The channel capacity is then

. 1
{J = {3 +2'

. f3+2( = log ._/3-.- .
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Note how this checks the obvious values in the cases P = 1 and P = t.
In the first, {3 = 1 and C = log 3, which is correct since the channel is then
noiseless with three possible symbols. If p = !, {3 = 2 and C = log 2.
Here the second and third symbols cannot be distinguished at all and act
together like one symbol. The first symbol is used with probability P =
t and the second and third together with probability ~. This may be
distributed in any desired way and still achieve the maximum capacity.

For intermediate values of p the channel capacity will lie between log
2 and log 3. The distinction between the second and third symbols conveys
some information but not as much as in the noiseless case. The first symbol
is used somewhat more frequently than the other two because of its freedom
from noise.

16. THE CHAXNEL CAPACITY IX CERTAIN SPECIAL CASES

If the noise affects successive channel symbols independently it can be
described by a set of transition probabilities Pi}. This is the probability,
if symbol i is sent, that j will be received. The maximum channel rate is
then given by the maximum of

L Pi pi} log L Pi pi} - L Pi Pi} log Pi}
i.i i i,i

where we vary the Pi subject to ~Pi = 1. This leads by the method of
Lagrange to the equations,

poi
~ P.} log " -p.-p--:. = IJ., L..J 1 t}

i

s = 1,2, ....

Multiplying by P, and summing on s shows that IJ. = -c. Let the inverse
of P.} (if it exists) be lI.t so that L It.tp.} = lil}. Then:

•
L IT.t p.} log P.i - log L r.r«
s.i i

Hence:

or,

Pi = L Iti t exp [C L ItOI + L It. t po} log P.;!.
t 8 8.;

This is the system of equations for determining the maximizing values of
Pi, with C to be determined so that ~ Pi = 1. When this is done C will be
the channel capacity, and the Pi the proper probabilities for the channel
symbols to achieve this capacity.
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If each input symbol has the same set of probabilities on the lines emerging
from it, and the same is true of each output symbol, the capacity can be
easily calculated. Examples are shown in Fig. 12. In such a case Hr(y)
is independent of the distribution of probabilities on the input symbols, and
is given by -2; Pi log Pi where the Pi are the values of the transition proba
bilities from any input symbol. The channel capacity is

Max [Ile,,) - H,,(y)]

= Max H(y) + 2; Pi log Pi.
The maximum of 8(y) is clearly logm where m is the number of output

abc
Fig. 12-Examplcs of discrete channels with the same transition probabilities {or each

input and for each output.

symbols, since it is possible to make them all equally probable by making
the input symbols equally probable. The channel capacity is therefore

C = log 111 + ~ Pi log Pi.
In Fig. 12a it would be

C = log -l - log 2 = log 2.

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C = log -l - J log 3 - ! log 6

= log 4 - log 3 - ! log 2

= log ! 2~.

In Fig. 12c we have

C = log 3 - t log 2 - ! log 3 - t log 6

3
= log 213\ i} .
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Suppose the symbols fall into several groups such that the noise never
causes a symbol in one group to be mistaken for a symbol in another group.
Let the capacity for the 11th group be en when we use only the symbols
in this group. Then it is easily shown that, for best use of the entire set,
the total probability P; of all symbols in the 11th group should be

r
r, = ~2c,;'

Within a group the probability is distributed just as it would be if these
were the only symbols being used. The channel capacity is

C = log 1;2c" .

1i. AN EXAMPLE OF EFFICIENT CODII\G

The following example, although somewhat unrealistic, is a case in which
exact matching to a noisy channel is possible. There are two channel
symbols, 0 and 1, and the noise affects them in blocks of seven symbols. A
block of seven is either transmitted without error, or exactly one symbol of
the seven is incorrect. These eight possibilities are equally likely. We have

C = Max [H(y) - Iliy)j

= -+- Ii + ~ log 1]
= t bits/symbol.

An efficient code, allowing complete correction of errors and transmitting at
the rate C, is the following (found by a method due to R. Hamming):

Let a block of seven symbols be ,'rr, X2 , ••••'(7, Of these X',3, X., X6 and
)(7 are message symbols and chosen arbitrarily by the source. The other
three are redundant and calculated as follows:

X,I is chosen to make a = X 4 + X o + .\6 + X7 even

X ".' 2

v ".q

"
" "

{1 = X 2 + X 3 + X o + X, "

'Y = Xl + .\3 + .\.+ X 7 ec

When a block of seven is received a, f3 and 'Yare calculated and if even called
zero, if odd called one. The binary number a {1 'Y then gives the subscript
of the Xi that is incorrect (if 0 there was no error).

APPENDIX 1

THF: GROWTH 01<' THE NUMBER OF BLOCKS OF SYMBOLS WITH A
FINITE STATE CONDITION

Let N ;(L) be the number of blocks of symbols of length J~ ending in state
i. Then we have

Nj(L) = L: N i(L - b;j')
i s
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where bL , b7j , ... b"/j are the length of the symbols which may be chosen
in state i and lead to state j. These are linear difference equations and the
behavior as L ---+ cc must be of the type

N, = AjWL

Substituting m the difference equation

.r, J1'L = L.L H'L-bj:)
ts

or

Aj = L Ai J1'-b~-;)
is

For this to be possible the determinant

DOr) = Ia., I = IL Jr-b!,j) - O;j I
"

must vanish and this determines 11', which is, of course, the largest real root
of D = O.

The quantity c: is then given by

C' L' log ~Aj H,'L I,= 1m -- = og II"
I,~", L

and we also note that the same growth properties result if we require that all
blocks start in the same (arbitrarily chosen) state,

APPENDIX 2

Ih:Rlv ..u'IOI\ OF H = -~ Pi log p,

Let II (~ , ~, ' .. )) = .-'(II), From condition (3) we can decompose
II II II

a choice from SUi equally likely possibilities into a series of 111 choices each
from s equally likely possibilities and obtain

A (s") = III A(s)

Similarly

-1(/") = II A(t)

We can choose II arbitrarily large and lind an 111 to satisfy
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A(t) = -K log t

1

m A(t) Ior - - -- < E1/ A(s)

Thus, taking logarithms and dividing by n log s,

~ s log t ::; ~ + ~ or I'!! _ log t I< E
11 log s 11 11 n log s

where E is arbitrarily small.
Now from the monotonic property of A (n)

A (sm) s A (t1l
) :::; A (sm+lJ

mA(s) :::; nA(t) :::; (m + 1) A(s)

Hence, dividing by nA(s),

~ < A (t) < '!! + ~
1t - A(s) - 1/ 11

I
A (I) _ log t) < 2E
A(s) log s -

where K must be positive to satisfy (2).
Now suppose we have a choice from It possibilities with commeasurable prob-

abilities Pi = niwhere the It; are integers. We can break down a choice
~l1i

from ~1/i possibilities into a choice from It possibilities with probabilities
Pi . . . pn and then, if the ith was chosen, a choice from Iti with equal prob
abilities. Using condition 3 again, we equate the total choke from ~lIi

as computed by two methods

K log 2";1/i = H(Pt , ... , Pn) + K2"; Pi log Iti

Hence

H = K [~ Pi log ~ n, - ~ Pi log nil

r '\' I 1Ii ,- "i' I= - ft ... P,' og - = - ft ... Pi og Pt' .
2";l1i

If the Pi are incommeasurable, they may be approximated by rationals and
the same expression must hold by our continuity assumption. Thus the
expression holds in general. The choice of coefficient K is a matter of con
venience and amounts to the choice of a unit of measure.

APPENDIX 3

THEOREMS ON ERGODIC SOURCES

If it is possible to go from any state with P > 0 to any other along a path
of probability P> 0, the system is ergodic and the strong law of large num
bers can be applied. Thus the number of times a given path Pij in the net-
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work is traversed in a long sequence of length N is about proportional to the
probability of being at i and then choosing this path, P iPijN. If N is large
enough the probability of percentage error ± 0 in this is less than E so that
for all but a set of small probability the actual numbers lie within the limits

(PiPij ± o)N
Hence nearly all sequences have a probability P given by

P = np~:iP'i±6)N

and 10;Pis limited by

log P J--w- = "i;(J i Pij ± 6) log Po
or

[log P J I--w- - "i;} i Pij log Pij < 1/.

This proves theorem 3.
Theorem 4 follows immediately from this on calculating upper and lower

bounds for n(q) based on the possible range of values of P in Theorem 3.
In the mixed (not ergodic) case if

and the entropies of .the components are HI ~ H 2 ~ ••• ~ H; we have the

Theorem: Lim log l1(q) = .p(q) is a decreasing step function,
.v-"" N

.II-I w

tp(q) = H. in the interval L: (Xi < q < L (Xi.
I I

To prove theorems'S and 6 first note that PN is monotonic decreasing be
cause increasing N adds a subscript to a conditional entropy. A simple
substitution for PHi (Sj) in the definition of FN shows that

F,\. = N GN - (N - 1) GN_ I

and summing this for all N gives GN = ~ 2: FN. Hence GN 2:: r, and GN

monotonic decreasing. Also they must approach the same limit. By using
theorem 3 we see that Lim GoY = II.

N-""

APPENDIX 4

MAXIMIZING TH~; RATto: I'OR .\ SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of symbols that is of
the finite state type and ran be represented therefore by a linear graph.
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Let tii) be the lengths of the various symbols that can occur in passing from
state i to state j. What distribution of probabilities Pi for the different
states and pial for choosing symbol s in state i and going to state j maximizes
the rate of generating information under these constraints? The constraints
define a discrete channel and the maximum rate must be less than or equal
to the capacity (' of this channel, since if all blocks of large length were
equally likely, this rate would result, and if possible this would he best. We
will show that this rate can be achieved by proper choice of the Pi and pi~.'.

The rate in question is

P (s) I (0) V-2; ,P'i og Pii _ 1.

P
(a) e(R) , , - M--z (,lPii 'ii

Let t; = L fi'/. Evidently for a maximum pl"/ = k exp fii). The COI1-

straints on maximization are 1:.]1 i

Hence we maximize

1, L Pi} = 1,2: Pi(Pi} - Oi}) = o.
i

[ ' = .-2;P'}ii log Pi} + ~ '"' P, + ~ 'p" +~. ,p,(p" _ ~,,)
~p.p ..r.. 1\ ~ I ""Il' I) ..fI) 1 0) U,)

ti.J I " 11 I

ill' = _MP,(l-±.logPu) + NP,fu + A + Ili + fliP; = o.
ap,} M2

Solvi?g for Pii

Since

LPii = 1,
i

Ail = L n.o':
i

The correct value of D is the capacity C and the B, are solutions of

s, = 2; HjC- f i l

for then

P' - ~C-(il
.) - B;

sr. B j c'» = r,
- • B i

or
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So that if hi satisfy
-l

~"'Ii C 'I = "'(j

Pi = Bi"'li

Both of the sets of equations for B i and "'Ii can be satisfied since C is such that

I -( Ic ,,- Ou = 0

In this case the rate is

"'P P I B j C-f i j
~ i ii og B

j

»t, Pij (ji

B·sr, p,; log If
=C-

~Pi Pij f i j

but

:::.1)i Pu(log B j - log 8,) = L P, log B j - zr, lo~ B, = 0
j

Hence the rate is C and as this could never be exceeded this is the maximum,
justifying the assumed solution.

(1'" be continued';


